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This white paper will discuss some important issues related 

to the prediction of low and very low probability events and 

possible solutions Innovatorium has developed based on 

Heuristic Analytics.  

To avoid some daily language inaccuracies we’ll adopt the 

convention that a low probability event has a chance of 

occurrence of less than 1%.  When necessary we may even 

distinguish the very low probability events as having a 

chance of occurrence of less than 0.1%.  

The most familiar examples of low probability events are 

lottery winning, economic depression, and insurable events 

like flooding or earthquakes. However we are surrounded 

by many low probability events that we choose not to care 

about since their effects are irrelevant to us. In practice we 

usually want to know the statistical distribution of these 

events and also a cost function which describes their effects. 

Analyzing low probability events is difficult since we need 

huge volumes of data and to use statistical distributions 

different from the ones we use in common applications. 

Moreover estimating parameters is also a very complex task 

at least because statistical parameters are usually derived 

based on the maximum likelihood method which leads to 

unreliable results if there is a significant mismatch between 

the selected and the empirical distribution. 

Below we’ll use as example the flooding of a small Floridian 

community.  From historic records during the 12/01/1930 

to 12/01/2010 period we found 14 cases of flooding. This 

represents a probability of flooding of 0.049% or an average 

likelihood of once every 2060 days. From this number of 

occurrences it is practically impossible to build a reliable 

predictor and collecting more data is not an option since it 

may take over 1500 years, a perfect case of unknowable. 

From the Heuristic Analytics perspective the solution to this 

dilemma is to build an Observer with predictive power. 

What we have to do is to find other measurable parameters 

and a formula to combine the values of these parameters to 

describe the parameter(s) of interest. Obviously the new 

observer has predicting power if it correctly predicts all 

known events and doesn’t falsely predict inexistent events. 

An Observer represents an indirect measurement and is 

used in many fields from engineering, medicine, to social 

studies. From medicine a well known example of observer 

was developed by Dr. Lee Goldman from Harvard for quick 

selection of patients with heart attack. A much more exotic 

example is the Facial Action Coding System (FACS) known 

as the taxonomy of facial expressions.  

Today every field of activity is dominated by the use of 

observers and a good measure of advancements in that field 

is given by the complexity of available observers. The main 

reason for using observers is to replace the hard to obtain 

direct value with a set of easier and more accurate direct 

measurements plus a formula or process to convert the 

known values into a result with predictive power.  

In the particular case of our study building the basis for an 

observer was an easy task since we have available historic 

measurements of the water level in a nearby creek. And 

since flooding and the water in the creek had the same 

source it is easy to build a mental connection justifying the 

observer. In general to build the flooding observer you need 

to analyze very large volumes of data and know very well 

the local geography. 
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The next step involves choosing a statistical distribution and 

finding parameters to match empirical data thus validating 

the observer. Although it is not very difficult to search 

among various distributions until one matches close enough 

the empirical distribution, finding its parameters could be a 

very challenging task. The main reason is that standard 

formulas are based on maximum likelihood which is unable 

to correctly predict the parameters when the empirical 

distribution is far from the assumed one. Figure 1 at the end 

of this paper shows the empirical and the Pearson IV 

Probability of Distribution Functions (PDF) with parameters 

derived using the maximum likelihood method. 

At Innovatorium we have built other estimators based on 

the Best Fit generating acceptable parameters irrespective 

of the empirical distribution. Figure 2 shows a comparison 

of the empirical distribution and several other distributions 

like Weibull, Log-Normal, Pearson IV, and Chi Square with 

parameters based on our algorithms. These approximations 

are much closer to the empirical distribution but are still not 

very good at predicting the very low probability events we 

care about. While for common applications predicting 

errors of less than 0.25% are very good for low probability 

events it is totally unacceptable. Figure 3 exemplifies this by 

showing a detail of the same distributions as above but 

restricted to water levels of 14 ft and over. 

At Innovatorium we have designed statistical distributions 

of higher order able to better fit the needs of these very low 

probability events. Figure 4 shows a detail within the same 

range of 14 ft and over using a proprietary distribution 

labeled Optimal Estimator. Using the same algorithm we 

may identify similar estimators describing also the expected 

limits. These estimators predict that flooding occurs when 

water level is over 19.5 ft which happens with a probability 

of 0.045% close enough to the true value of 0.049% thus 

giving enough predicting power to our observer. On average 

the water level is 19.5 ft and over every 2219 days which 

again is close enough to the true value of 2060 days. This 

estimator predicts a 0.00206% probability for water level to 

be within 19.5-19.75 ft and a 0.00071% probability for the 

range 22.0-22.25 ft, both at orders of magnitude higher than 

what normal distribution predicts for these extreme cases.  

Mathematically the whole model is defendable. For example 

the existence of these bounds was predicted by the Gartner-

Ellis theorem of large deviations for weakly dependent 

sequences. On the other side from the Predictive Analytics 

the most common solutions are based on Poisson processes 

relying on the hard to validate assumption of independence.   

By having such a detailed description of the most likely 

probability and its expected range we could have a much 

cleaner description of the risk therefore we could optimize 

insurance premiums. The insurance agency could really 

differentiate customers that have implemented mitigation 

measures involving for example raising the ground even at 

the inch level thus providing incentives to reduce the cost of 

the entire system by reducing the losses. 

Conclusions 

Low probability events can be predicted conveniently and 

accurately enough using observers built from background 

knowledge of the real events and data analysis.  

Innovatorium has designed techniques to build convenient 

observers, special statistical distributions, and formulas to 

estimate their parameters capable to reach accuracies many 

times an order of magnitude better than traditional ones.  
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Figure 1 

 

Figure 2 
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Figure 3 

 

Figure 4 
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